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Appendix J — Generalized Linear Model
The Poisson Regression Model

The Poisson regresson modd is a specific type of generdized liner modd (GLM). A
comprehensve reference for GLMs is McCullagh, P. and Nelder, JA. (1989) Generalized
Linear Models. Second Edition. London: Chapman and Hall*.

A GLM isdescribed by the following assumptions:

1. There is a response variable, y, observed independently for specific vaues of the predictor
variables, X1, X2,, ..., Xp.

2. The predictor varidbles influence the didribution of y through a single linear function cdled
thelinear predictor h=Dbx +b,x, +...+ b x .

3. The digribution of y hes a dendty function of the
formf (y:q.j ) =expgA{ya - 9(a)}/i +t(y.i /A)f, where ) is a scale parameter, A
isaknown prior weight, and parameter ¢ depends upon the linear predictor.

4. The mean, |, is a smooth invertible function of the linear predictor: | =m(h),

h=m"(1)=I(1). Theinversefunction, | (-), iscalled thelink function.

For a Poisson distribution with mean | , we have Inf(y)=yIn(1)-1 -In(y!) so g=In(l),
j =landg(q)=1 =¢"2

Given n observations from aGLM, thelog-likelihoodfunctionis
(@, ;Y)= aSA{yq a@)}i +t (v /AR,

which has a score function for g of

U(a)=A{y. - ofa)}/i

From thisit can be shown that
E(y) =1, =o4a) and VAR(y) = o).

The score function is only provided here for reference purposes, we do not make use of it in
subsequent sections of this report.  For a derivation of this, including use of the score function,
see McCullagh and Nelder, 1989, section 2.2.

! Another source for aquick review of generalized linear modelsis Christensen, R. 1997. Log-Linear Models and
Loglst|c Regression, 2" Edition. Springer-Verlag. Chapter 9, Generalized Linear Models.

2 For areview of homogeneous and non-homogeneous Poisson processes see: Ross, S. 1997. I ntroduction to
Probability Models, 6" Edition, Academic Press. Section 5.3 and 5.4. Also see Kao, E. 1997. An Introduction to
Stochastic Processes, Duxbury Press. Chapter 2.
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We assume that the number of loans that will “clam” during a given year, out of the loans that
ae active® a the beginning year, is a function of a number of predictor variables. We further
assume that the mean or expected number of clams duing a given year is the parameter of a
Poisson didribution.  The Poisson didribution modds the probability of y events, or clams,
according to a Poisson process with the probability distribution function given by:

Sy

o(y:1) =21 fory=012,... J.2).

y!
The mean or expected vaue of the Poisson didribution is | ; this is known as the Poisson
parameter.

The Poisson parameter is dependent on a specified unit or period of time. For our mode we
assume that the basic unit of time is one year and that a given Poisson didribution only applies to
this period. For example, it would be incorrect to assume that a specific Poisson parameter
goplies for a period of two or more years snce each year will have its own “unique” Poisson
digribution.

The mean number of clams, or the Poisson parameter, is a function of the predictor varigbles.
Suppose the data takes the form:

Y1 X151 X

yn Xln X2n “' an
where the y; represent n observations of the response variable and the Xx;; are the corresponding
observed values of k predictor variables.

The modd is then written y. =1, +e for i = 1, 2, . . ., n. The probability as a function of the
predictor varidblesis:

—I(xi,b), ~Yi
p(yl’xl’b):e g ()("b)H ,foryi:0,1,2,... (‘]2)

y,!
(In this notation b and x are vectors) Here | (x,b) replaces our earlier | . The function

| (x,b) must dways be nonnegative. A candidate for this function is €*®, where xb isa
lineer function. | (x,b) relates the predictor varigbles to the mean. Then equetion (A.1) is of
the form In(1 ) = x¢xb. Transforming the log link function we get the following expresson for
our response variable:

| :e(a+b1>t+b2>(2+b3>dNT.RTt+b4>R.GT1t+b5>R.LT1(+b5>CUMDIFFt+b7>LTVO+b8>LTV.AGE31+b9>ANN.HPA+b10>HPA (J_3)_

t
+b; PNEGEQ RGTY; +b; ,NEGEQ.RLT 1, +b13RHP+b; s UNEMP.L O+ by PAY.INC. AGE 4 +b 1 9SR)

3 By “active” we mean loans that enter a given year and have not claimed, prepaid or have been otherwise
terminated.
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Since var(y,) = e is not homogeneous from observation to observation, standard lesst squares

does not gpply. We use maximum likeihood methods. For the Poisson mode the log-likdlihood
function is given by:

1 (] _g‘l(wa)
i o) (x.b)” 0 %
;o

i=1

I(y,b) =

A
Oy!
i=1

We employ a generdized liner modd (GLM) because our link function is nortlinear and the
eror vaiance is not homogeneous. Since explicit expressons for the maximum likelihood
esdimators are not generdly available, estimates are cdculated usng an iterdtive approach. As
mentionetfl1 in Appendix A, a commonly used gpproach is iteratively re-weighted least squares
(IRWLS).

An outline of the IRWLS procedureis given below.®

1. Obtain an initid esimae of the coefficients and from this result obtain an initid edtimate
of the resduds. The initid edimate of the linear predictor is obtained usng a standard
linear modd that checks for problems such as negative logarithms.

2. From the initid resduds, compute a vaiance edimae, S 02 (equal to the sguared
resdud), and the initid weights, w , =y (q*'o)/(q*,o). Here y (-) is the influence

function.®

Use weighted least squares to obtain new robust parameter estimates.

Let the parameter etimates from gep (3) take the role of the initid weights in sep (1)
and obtain new residuds, a new variance estimate, and new weights.

Return to and repeat step (3).

Repeat until the edimates converge.  The convergence criterion is to dop if

|deviance - deviance}|<e. In our mode we st e equa to 10, The deviance for
itertion 1 is defined as twice the loglikdihood ratio detidic; this is given by

zéAg ya(y:)- gla(v))} - {yiél ; g(d)}g'

A~

o u

* For acomplete description of the IRWLS procedure please see McCullagh and Nelder, 1989, section 2.5. Another
sourceis Stokes and Koch, 1983; A Macro for Maximum Likelihood Fitting of Log-Linear Models to Poisson and
Multinomial Counts; Proceedings of the Eighth Annual SAS Users Group International; Cary, North Carolina: SAS
Institute, pp. 795-800.

® Note that, although the procedure is conventionally known asiteratively re-weighted least squares, it isamaximum
likelihood technique.

6 Aninfluence function estimates how individual data points affect regression results. We use a Huber influence

*

function which is bounded: Y (q) =e if |e|| £r andrif € >r and—rif q <-r. Wesetr =1and

e,* = % . In OLStheinfluence function is theidentity function. See Huber, P.J. 1973. Robust Regression:
i

Asymptotics, Conjectures, and Monte Carlo. Annals of Statistics 1. 799-821.
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Supposed Biasin GLM

It has been argued that loglinear modds (like the Poisson mode used in our andyss of
conditiond clam and prepayment rates) are biased, and therefore the results of such a mode
would need to be adjusted by some factor to correct for that bias. In the following text, we
explain why thisis not the case and that no adjustment is needed.’

The argument for log-linear bias begins with the statement that the loglinear modd is specified
as.

In(l1) =bxx+e

where epsilon represents the error term.  However, the correct specification of a log-linear model
is

") = xx
The differences between the two specifications are:

1. The intention is to modd the expected vaue of the response, in this case, the Poisson
parameter, and

2. Thereisno error term because we are modeing the expected vaue.

In the Poisson regresson modd, the only varigbility is around the Poisson counts. There is no
automatic bias in this edtimate because of the “erors’ in the linear modd; no such erors are
assumed to be present.

The suggestion of bias in the argument flows from the idea that In(1) is determined via a linear

modd with erors and that the obsarvation is taken from a Poisson modd with a | so
determined.  While this “linear-modd-with-errors-for-In(1 )” view could be appropriate, it does
not correspond to the usual GLM. With the latter, observations are taken from a Poisson model
where the log of the mean is exactly linear in the explanatory varigbles. No erors enter into the
population vaues of In(1). The key modding assumption under the usud GLM view of things
isthat In(1) corresponding to different values of x lie exactly on a draight line.  Departures from

draight line behavior in actud counts arise solely out of the Poisson variability at each | .

If it is believed that the populations, cdls in this case, being moddled are comprised of groups
with varying Poisson parameters, then one would build a Mixed Effects modd. In this type of
modd, we would introduce additiond variability around the Poisson parameter - the mogt
popular approach to doing this is to assume that the Poisson parameters are Gamma distributed
in which case the modd turns out to be a Negative Binomid.

" The explanation that follows was enhanced by discussions with several statisticians and econometricians from
various academic institutions and professional service firms, including the Wharton School of the University of

Pennsylvania, Oxford University, Virginia Tech, and Deloitte & Touche. In addition, amore introductory text is

Dobson, Annette J. 1990. An Introduction to Generalized Linear Models, CRC Press.
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With respect to the interpretation of e°* a a given vaue of x, and where b is estimated, this is
both the estimated mean a the given x and a prediction of a given count a that x. The latter is of
course “predicted” with much less certainty since actud counts deviate from the mean according
to Poisson variability (which is equd to the mean). Another sometimes important issue is that
b, and possbly x, are etimated, and hence subject to error. This implies the estimate of te
mean is subject to estimation error which could be taken into account when making inferences.
However, there is no consensus on how this should be accomplished - some suggest that the
confidence interval around the mean should be increased. As a practicd métter, the esimation
eror associated with b and x is often samal in reation to the Poisson variability of the counts

gven | (thatis assuming b and x are known exactly).

J5



